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SUMMARY 

This paper addresses the problem of estimating the residence times in a marine basin of a passive constituent 
released in the sea. The dispersion process is described by an advection-diffusion model and the hydrodynamics is 
assumed to be known. We have performed the analysis of two different scenarios: (i) basins with Unidirectional 
flows, in three space dimensions and under the rigid lid approximation, and (ii) basins with flows forced by the 
tide, under the shallow water approximation. Let the random variable z be defined as the time spent in the basin by 
a particle released at a given point. The probability distribution of z is obtained from the solution of the advection- 
diffusion problem and the residence time of a particle is defined as the mean value of z. 

Two different numerical approximations have been used to solve the continuous problem: the finite volume and 
Monte Carlo methods. For both continuous and discrete formulations it is proved that if all the particles eventually 
leave the basin, then the residence time has a finite value. We present here the results obtained for two study cases: 
a two-dimensional basin with a steady flow and a one-dimensional channel with flow induced by the tide. The 
results obtained by the finite volume and Monte Carlo methods are in very good agreement for both scenarios. 
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1 .  INTRODUCTION 

This paper addresses the problem of estimating the residence time in a semienclosed marine basin of a 
passive constituent released at a given point of the basin and subsequently dispersed by sea motions; in 
many cases it will eventually leave the basin. It is assumed that the evolution of a passive constituent 
results from advection by the currents, migration (in particular due to sedimentation or buoyancy), 
diffusion by turbulence and in general by all small-scale motions which contribute to the agitation of the 
sea. Thus this dispersion process may be described by means of an advection-diffusion model. 
Furthermore, here we assume that the hydrodynamics is known experimentally or given by a 
preliminary model. 

We will consider two different scenarios: (i) basins with unidirectional flows and (ii) basins with flows 
forced by the tide. Here flows are defined as unidirectional when the sign of the flow (negative 
flow = inflow, positive flow = outflow) on the fluid boundaries between the basin and the open sea is 
time-independent; furthermore, the global balance ‘total inflow = total outflow’ holds. In contrast, flows 
forced by the tide oscillate on the fluid boundanes of the basin; fiuzhermore, the time average over a tide 
period of the flow is zero. 
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The analysis of the first situation could be performed in general in three space dimensions and under 
very few assumptions on the air-sea interface. However, to simplify the treatment of the subject and 
without a real loss of generality of the problem, we will assume the rigid lid approximation. The analysis 
of the second situation is performed by assuming the shallow water approximation, because many 
problems are handled under this assumption. Moreover, the analysis of advection-difision problems in 
the shallow water approximations with time-dependent flows (in particular oscillating flows) shows 
interesting peculiarities. 

Let the time and space history of a particle be determined by a stochastic dispersion process in a 
basin. We will introduce the random variable 7 defined as the time spent in the basin by a particle 
released at a given time and at a given point of the basin. The probability distribution of 7 is obtained by 
means of the solution of the advection-difision problem describing the dispersion process. The 
residence time of a particle is then defined as the mean value of 7. For the advection-difision problems 
considered in the following, for which all the particles eventually leave the basin, it will be shown that 
the residence time, as defined, has a finite value. We note that the advection-difision equation is the 
forward Kolmogorov equation associated with the stochastic process z. Solutions of first-passage time 
problems can be achieved by use of the backward equation.” 

Two different numerical approximations have been used to solve the continuous problem: the finite 
volume and Monte Carlo methods. It will be shown that all the results proved for the continuous 
problem also hold for the solutions of the discrete equations obtained by the finite volume method. 
Numerical simulations have been performed for basins with different spatial dimensions and types of 
circulation. We present here the results obtained for two study cases: a two-dimensional basin with a 
steady flow and a one-dimensional channel with flow induced by the tide. These cases are idealized 
scenarious of dispersion processes in a coastal lagoon connected with the sea by narrow channels; the 
circulation in the lagoon can be controlled either by a pumping system or by the tide. The results 
obtained by the finite volume and Monte Carlo methods are in very good agreement for both scenarios. 

2. BASINS WITH UNIDIRECTIONAL FLOWS UNDER THE RIGID LID ASSUMPTION 

Let S2 be a bounded open and connectes set of R3 representing a semienclosed marine basin (Figure 1) 
in the rigid lid appr~ximation.~ The boundary r or S2 is assumed to be sufficiently smooth; moreover, 
T = To U TS U Tf, where To is the air-sea interface, Ts represents the solid (lateral and bottom) 
boundaries and Tf the fluid (lateral) boundanes between the basin and the open sea. In rectangular co- 
ordinates x = (xl , x,, x ~ ) ~ ,  where the x,-axis is vertically upwards, let x3 = 0 and x3 = -ho(x,, x,) be 

t x3 

Figure 1. Representation of semienclosed basin R with boundary r = To U Ts U Tf.To is the air-sea interface, Ts represents the 
solid boundanes and Tf (broken lines) the fluid boundaries between the basin and the open sea; n is the outward-pointing normal 

on Y 
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the equations of the air-sea interface and the bottom respectively. The surface x3 = 
-ho(x,, xz), (x, , x2) E To, is assumed to be a single-valued function; the fluid lateral boundaries are 
orthogonal to To. 

The velocity field in R is separated into an average part v = (vl ,  vz , v3)T and a fluctuating part of zero 
mean over a characteristic time scale t* in the sense of the Krylov-Bogoliubov-Mitropolsky method4; 
erratic processes with characteristic times much smaller than t* will tend to cancel each other out over a 
time of order t*. The field v, which is in general time- and space-dependent, is assumed to be divergence- 
free in R and with zero normal components to To U r,: 

V - v = O  i n n ,  v - n = O  o n T o U r , ,  (1) 

where n is the outward-pointing normal to T. The field v is assumed to be unidirectional in the sense that 
the sign of the flow v * n on Tf is assumed to be time-independent; in this case we can define the parts 
Tf- and Tf+ of Tf where v - n < 0 and v - n > 0 respectively: Tf = Tf- u Tf+. From (1) it follows that 
v satisfies the global mass conservation equation 

We take into account the turbulent mixing processes due to the fluctuating part of the velocity field by 
means of a time-independent eddy difisivity matrix K 

0 0 kv 

where kH(> 0) and kv(> 0) are the horizontal and vertical eddy difisivities respectively. 

basin is introduced in the model by means of the velocity field 
The migration due to the gravity and buoyancy forces affecting the dispersion of particles within the 

w = (o,o, wlT in 0, 

where w is a constant. We assume that w = 0 on To when w > 0 in R and that w = 0 on Ts when w < 0 
in R. For a Stokes flow, w is expressed by 

where r is the particle radius, g is the gravitational acceleration, ps and pf are the particle and sea water 
densities respectively and v is the kinematic viscosity. 

Let u(t, x)dx be the probability of finding a particle at time t in a volume dx around x,x E Q under 
the condition that at time to the particle was released in the region R,, a subset of R. Alternatively, u(t, x) 
may be interpreted as the concentraiton of a passive constituent at time t and point x which has been 
released at time to in R,. We assume that when a particle reaches the air-sea interface To or the solid 
boundaries Ts it is reflected inside the basin, while when it reaches the open boundaries Tf it generally 
leaves the basin, unless at Tf we have an advection-dominated inflow. More precisely, we define two 
different advection4ifision problems depending on the behaviour of the particle on Tf. 
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Problem PI 

When a particle reaches Tf, it leaves the basin independently of the sign of v -  n on Tf; thus Tf is 
considered as an absorbing bamer. This situation is assumed for a diffision-dominated flow near Tf. 
Under this assumption we are led to assume that u(t, x) satisfies the following advection-diffision 
problem: 

all 
- + v - [(v + w)u - K vu] = 0 in R, 
at 

u(to, x) = uo(x) > 0 in no, u(to, x) = 0 in R \ R,, (3) 

(wu - K V u ) - n  = 0 on To u TS, (4) 

u = O  onr , .  ( 5 )  

Problem P2 

When a particle reaches Tf, it leaves the basin when v - n > 0 on Tf, while the total flux is assumed 
equal to zero when v n < 0 on Tf . This situation is assumed for an advection-dominated flow near Tf. 
Under this assumption we are led to assume that u(t, x) satisfies the advection-difision problem 
defined by ( 2 x 4 )  and by the following boundary conditions on Tf: 

( v u - K V u ) - n = O  onTf-, - K V u - n  = 0 on rr+. (6 )  

Every real situation is characterized by a specific behaviour of the particles on the open boundaries, 
which should be implemented in a mathematical model by suitable boundary conditions. A general 
form of these conditions is expressed in terms of the flux: 

(vu-KVu).n=Q,+v*(u-u*) ,  

where @, v* and u* are assigned and represent the interactions between the system and the external 
world. The boundary conditions (5) and (6) in problems P1 and P2 respectively are special cases of the 
above expression for the flux, with Q, = 0 and u* = 0; v* .+ 00 for condition (5); v* = 0 on Tf- and 
v* = v n on Tf+ for condition (6). Conditions ( 5 )  and (6) describe the behaviour of the particles near 
the open boundaries in some very representative cases, in which all the particles eventually leave the 
basin (Lemma 1 holds true) and the residence time (see Definitions 1 and 2) has a finite value (Theorem 
1 holds true). Moreover, conditions ( 5 )  and (6) are representative of boundary conditions which are 
respectively independent of and dependent on the sign of v - n on Tf. In general, when no sources are 
given on Tf, in a first approximation the flux on Tf could be expressed as v*u (i.e. with Q, = 0 and 
u* = 0 in the above expression). We would have v* M 0 on Tf- and v* > 0 on Tf+; the cases 
v* = 0, v* = v * n and v* >> v - n represent zero, advective and diffisive fluxes respectively. By 
assuming that (vu - K Vu) - n = v*u on Tf, a sufficient condition for the validity of Lemma 1 and 
Theorem 1 is given by v* 2 v -  n.  Otherwise, when sources are given on Tf (i.e. when 0 on Tf- and 
u* > 0 on Tf), Lemma 1 does not hold. This case represents the situation of a time-continuous release. 

Any solution u(r, x) to problem P1 or P2 satisfies the maximum principle;596 since uo(x) > 0 in R and 
u = 0 on Tf, when Dirichlet boundary conditions are assigned, it follows that u(t, x) 2 0 in R for t > 0. 
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Lemma I 

Let u(t, x )  be a solution to problem P1 or P2. Let Ui(t), i = 1 ,2  be the ith power of the Li(R)-norms of 
u(t, x), i.e. 

8- 

Ui(t) = [u(t, x)li dx, 
n 

and let Uio = Ui(to). Then for i =  1,2 
aui - < 0, 
at (7) 

ProoJ From (2H6) and taking into account (l), by direct calculation we obtain that 

where 

au1 - + F(t) = 0, 
at 

F(t)  = (vu -KVu)-nds,  I,, 
(u2v - KVu2)-nds - - U 2 W ' D d s .  

(9) 

We have that F(t )  > 0 and G(t)  > 0 for both problems P1 and P2; therefore from (9) and (10) it follows 
that (7) holds. Furthermore, Friedrichs' first inequality holds, i.e. 

jn KVu-  Vudx > p0U2(t), 

where p o  is a positive constant. Thus from (10) we obtain that 

Moreover, 

From (1 3) and (14) it follows that (8) holds. 0 

Definition 1 

Let Ro = {xo} and let z(to, xo) be the random variable defined by z(to, xo) =time spent in R by a particle 
released at time to in xo. 

We introduce the notation 

U1(t; to, xo) = Ul(t)/UKJ, > to ,  
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for a particle released at time to in xo; this ratio is a measure of the probability of finding a particle at time 
t in Q. Thus we define 

Ul( t ;  to, xo) = Prob{r(t,, xo) 2 t - to} (Ul(t0; to9 xo) = 11, (15) 

P(t; to, xo) = 1 - U,(t;  to, xo) = Prob(z(to, xo) < t  - to). (16) 
The probability density functionp(t; to, xo) of z(to, xo) is given by 

ap au, p(2; to, xo) = - at = - ~, at 

From (8), which states that as time increases all the particles eventually leave the basin, we have that 

p(t;  to, xo)dt = lim P(t; to, xo) = 1. 
f + C c  

Definition 2 

The residence time T*(to, xo) of a particle released at time to in xo is defined as 

T*(to, xo) = mean value of the random variable r(to, xo). 

Theorem 1 

Under the assumption of Lemma 1 for u(t, x) let 

(i - to)p(t’; to ,  xo)dt’, 

Then 

ProoJ From (17) and (19) we have the identity 

T(t;  to, xo) = - ( t  - to)Ul(t; to, xO) + Ui(t’; to ,  xO) dt’; J:, 
thus 

T(t; to ,  xo) < F(t; to, xi)) = U,(t’; to ,  xo)dt‘. d 
From (14) it follows that 

lim(t - to)Ul(t; to, xo) = 0 and T(t; to, xo) 6 ?(t; to, xo) 6 c/po(l - e-Po(‘-‘o)), 
t+m 

which imply (21). 0 
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Remarks 

(i) From (9) and (17) the probability density function p(t;  to, xo) is expressed as 

P(t;  to, xo> = W), 
where F(t)  is as defined in (1 1) and represents the total flux on Tf. 

(ii) The estimators of the residence time defined in (19) and (20) represent 

T(t; to, xo) = average residence time of the particles which left the basin before time t ,  

T(t ;  to ,  xo) = average residence time at time t. 

(iii) Let 

Under the assumptions of Theorem 1 we have that 

lim T2(t; to, xo) = var[~(t,, xo)] < 00. 
t+m 

(iv) In a pure advective process, z(to, xo) is not a random variable. It assumes either a finite value 
T*(to, xo) or an infinite value depending on the type of circulation in the basin (steady or 
oscillating flow) and on the initial condition (to, xo). The residence time T*(to, xo) may be 
computed from the equation of motion. In this limit case the variance is zero and the 
distribution P(t; to, xo) and the densityp(t; to, xo) are represented by a step function and a Dirac 
&function respectively centred on the mean value T*(to, xo). The superimposition of diffusion 
on a pure advective process produces a smoothing in this limit distribution. 

3. BASINS WITH FLOWS FORCED BY THE TIDE UNDER THE SHALLOW WATER 
ASSUMPTION 

Let now R be a bounded open and connected set of R2 representing the projection of the bottom surface 
x3 = -ho(x), x = (x, , x2), of the basin on the plane x3 = 0. Let r = Ts U Tf, where Ts and Tf are the 
solid and fluid boundaries respectively, be the boundary of R. Let x3 = q(t ,  x), x E R, be a single-valued 
function which defines the sea surface. The total depth h(t, x) of the basin is given by 

We will assume that 

thus 

O<h,, Q h(t ,  x) < h,. 



1214 G. BUFFONI, A. CAPPELLETTI AND E. CUPINI 

In the shallow water approximation the velocity field v represents averaged values over the depth of the 
basin (-ho, q). It is in general time- and space-dependent, with zero normal component to Ts, and the 
divergence of -hv gives the time derivative of the sea level: 

(24) 
a -+ V - h v = O  inR,  
at 

v * n = O  onr , .  

Furthermore, the sign and modulus of the flow v - n on Tf are time-dependent. In particular, when the 
flow is forced by the tide, we have a periodic law, of period 0, with zero mean on 0: 

h(t‘, x)v(t‘, x) - n dt’ = 0, x E Tf. (26) 

Here the field u(t, x) represents averaged values over the depth of the basin (--h,, q)  of the probability 
of finding a particle at time t in a volume dx around x, x E R. As in Section 2, we define two different 
advection-diffusion problems depending on the behaviour of the particle on Tf , 

J:‘” 

Problem PI’ 

When a particle reaches Tf, it leaves the basin independently of the sign of v -  n on Tf. Under this 
assumption we are led to assume that u(t, x) satisfies the following advection4iffusion problem: 

in R 

u(to, x) = uo(x) > 0 in R, u(to, x) = 0 in R \ R,, 

-kHVu.n = 0 on Ts, (29) 

u = O  onTf .  (30) 

The balance equation (27) assumed in this work is a simplified form7 of the general form derived by 
Nihoul.8 

Problem P2’ 

When a particle reaches Tf, it leaves the basin when v - n > 0 on Tf, while the total flux is assumed 
equal to zero when v * n < 0 on Tf. Under this assumption we are led to assume that u(t, x) satisfies the 
advection-difision problem defined by (27H29) and by the following boundary conditions on Tf: 

(uv - K Vu) * n = 0 when v n < 0, -KVu.n = 0 when v - n  > 0. (31) 

For problem P1’ the boundary condition (30) is independent of the sign of the flow on Tf. In contrast, 
for problem P2’ the type of boundary condition (3 1) depends on the sign of the flow v - n on Tf. The 
problem (P2’) under the assumption of periodic flow on Tf is solved as follows. Let 
fi = to + j 0 / 2 , j  = 0,  1,2,  . . . , and assume that on Tf 

v - n < 0 and (vu - K Vu) - n = 0 when t E (t2,, t2,+,), 

v - n  > 0 and - K V u - n  = 0 when t E (t2[+,,  t21+2), 
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for 1 = 0, 1,2,  . . ._ We solve problem P2’ in each interval (5, with the appropriate boundary 
conditions and assuming the continuity of u(t, x) at times 5 .  However, owing to this rule of changing 
the type of boundary condition on Tf, it follows that the time derivative of u(t, x) is discontinuous at 
times 5. 

Lemma 2 

Let u(t, x) be a solution to problem P1’ or P2‘. Let now U,(t), i = 1,2, be defined as 

~ , ( t )  = J h(t ,  x)[u(t, x)]‘ dx 
n 

and let Uio = U,(to). Then for i =  1,2 

au, 
- do, at 

with t # 9 for solutions to P2’ (because in this case fort = 5 the time derivative of Uj(t)  is not defined), 
and 

lim Ui(t) = 0. 
/+ 00 

ProoJ From (27H31) and taking into account (22)-(26), we obtain that U,(t)  and U2(t) satisfy 
equations (9) and (10) respectively, where K = IkH and F(t) and G(t) are defined as 

h(VU - kH VU). n ds, ( 3 3 )  

G(t) = 1 h(u2v - kH Vu2) * n ds. 
r r  

(34) 

For problem P1’ we have that F(t )  > 0 and G(T) > 0; thus aUj/at. For problem P2’ we have that 

F(t )  = 0 and G(t) > 0 for t E (t2,, t2,+l), 

F(t)  > 0 and G(t) > 0 for t E (t21+1, t,,,,); 

thus 

au1 au2 
at at 

~ < O  and ~ < 0  for t E (t2,+1, t21+2). 

Again, by using Fnednchs’ first inequality, it follows that U r ( t )  and U2(t) defined in (32) satisfy 
0 

From Lemma 2 it is possible to show that the estimators of the residence time defined in (19) and (20) 

inequalities (13) and (14) respectively; thus lim Uj( t )  = 0. 
/+ 00 

for problems P1’ and P2’ satisfy the results of Theorem 1. 
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4. NUMERICAL APPROXIMATIONS 

4. I. Finite volume method 

From the properties of the discrete analogues of problems P1 and P2 (and also of P 1’ and P2’ under the 
rigid lid assumption, which implies that V - hv = 0) it is easy to prove the discrete analogues of Lemma 
1 (Lemma 2) and Theorem 1 .  For problems PI’ and P2’ in the general case when the balance (24) holds, 
under the assumptions (22) and (23), the proof of discrete analogues of these statements is not 
straightforward. Thus a discrete approximation of problems P1’ and P2’ in the general shallow water 
formulation is presented in this subsectioni; its properties are shown and discrete analogues of Lemma 2 
and Theorem 1 (see Lemma 4 and Theorem 2) are proved. 

A grid is superimposed upon R; for simplicity we assume a regular grid of mesh spacings 
Ax;, i = 1,2 .  Let 2, k = 1,2 ,  . . . , m, be the kth grid point and let f l k  be the rectangular region 
around xk closed by the lines x, = 4 f Ax, /2 and x2 = 4 f Ax2/2; let rk be its boundary. We have 
that 51 = uRk and R, f l  SZ, = 0 for k # I. The discrete approximation of equation (27) is then obtained 
from the finite volume balances on f l k  

by means of suitable approximations of the integrals in Rk and of the fluxes on re. We obtain the 
semidiscrete equation 

where u(t) = [ u l ( t ) ,  u2(t), . . . , u,(t)lT and D(t), A(r) and B(t)  are m x m real matrices. 
The matrix D(t) is a diagonal matrix with positive diagonal entries 

P 

The matrix A(t) is symmetric and is the contribution of the diffusion operator - V * hk, V; in our 
model this operator is approximated by means of the usual five-point formulae (in two space 
dimensions; three-point formulae in one space dimension). From (23) we have that A(t) is positive 
definite for problem P1’ and positive semidefinite for problem P2’. 

The matrix B(t) is the contribution of the advection operator V - hv; it may be expressed as 

B(t) = Bo(t) + B,(t) + B2(t). 

Bo(t)  is a diagonal matrix: 

BOkk = S,,, v - [h(t, x>v(t, X)I ~ 2 .  

For a steady state flow or under the rigid lid assumption we have that V - hv = 0 in R; thus Bo(t) = 0. In 
the general case the semidiscrete analog of equation (24) holds: 

d 
-D(t) dt + 2B0(t) = 0. (37) 
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Bl(t) is a skew-symmetric matrix (Bl(t) = -BT(t)).B,(t) is a non-negative diagonal matrix. For 
problem Pl’, where the Dirichlet boundary condition u = 0 is given on Tf, B,(t) = 0. For problem 
P2’, where the total flux and the diffusive flux are assumed to be zero when v - n d 0 and v - n > 0 
respectively, we have that the positive diagonal entries of B2(t) correspond to points on Tf (if x k  E Tf, 
then &k(t) = (h(t ,  xk)v(t, xk) * n1/2; otherwise ~ , ~ ( t )  = 0). 

e = [ I ,  1 , .  . . , llT. 

Furthermore, let 

For problem PI’ 

A(4e b 0, [A(t) + BT(f)]e 2 0; (3 8) 

The second inequality holds if the condition (44) on the cell Peclet numbers is satisfied. For problem P2‘ 

A(t)e = 0 and BT(t)e = 0 when v n d 0 on Tf, 

A(t)e = 0 and BT(t)e = B,(t)e b 0 when v - n > 0 on Tf. 
An implicit method’ is used to solve the system (36): 

M J ~ J = D , - l ~ J - l ,  j =  1,2 ,  . . . ,  

where u, = u(t,), with t, = to +jAt  and uo given, 

M, = D, + At(Aj-, + B,-l), 

Lemma 3 

Let Pef, i = 1,2, k = 1,2 ,  . . . , m, be the cell Peclet numbers defied by 

Pe’; = (AxI /2kH)h(t, 4 + Ax, /2, &vl ( t ,  x f  + Axl /2, $1 
and by a similar expression for Pei. Assume that 

k (Pe , I< l  

Assume that the discrete analogue of equation (37) holds in the form 

f o r i =  1 , 2 , k =  1 , 2  ,..., m. 

Dj - D,-l + 2AtBoj-1 = 0. 

Then the diagonal entries of Mj are positive, the non-diagonal entries are non-positive and Mi is an 
irreducible M-matrix: 

det MJ # 0, M,:‘ > 0. (46) 

Proof We only sketch the proof. From (42) and (45) we may write the matrix Mj in the form 

Mj = (Dj + Dj-l)/2 + At(Aj-1 + BIJ-I + By-1). (47) 

Then the proof of the statement follows from the properties of the matrices Dj, Aj, Bl, and By and 
0 from the validity of condition (44). 
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Remark 

If discrete forms of equation (37) different from (45) hold, then we could define suitable matrices M, 
different from (42) so that the results of Lemma 3 hold again. 

Lemma 4 

Under the assumptions of Lemma 3, if u,, > 0, then the sequence {uJ) defined in (41) is positive. Let 

ulj = e T ~ j u j  = I I D ~ ~ ~ I I ~  9 (48) 

U2J = uTDJuJ = IIDJuJll;. (49) 

U,,<Uq-l, i =  1,2,  (50) 

UIJ = U I J _ ,  and U2J < U2J-1 when v - n d 0 on Tf, (51) 

Then for problem P1’ 

while for problem P2‘ 

u,, < UVP1, i = 1,2,  when v -  n > 0 on Tf. 

Furthermore, for both problems P1’ and P2’ 

lim UV = 0, i = I ,  2. 
;+ 00 

(52) 

(53)  

Thus the sequence {u,) is convergent to the null vector. 

ProoJ 
obtain that 

Assume that uo > 0; then from (41) and (46) it follows that u, > 0. From (41) and (42) we 

U,, + AteT(AjPl + B,-,)u, = Ul,-l. 

U2; + 2At~jT(A;-l + B2i-l)~; + S; = U2j-1, 

(54) 

Then inequalities (sOt(52) for i = 1 follow from equation (54) and from the properties (38)-(40). 
From (41) and (45) after some manipulations we obtain that 

( 5 5 )  

where 
T = (u; - ~ j - 1 )  D;-~(u; - uJ-l) 2 0. 

The eigenvalues of the matrices DJ:l(A,-l + B,-l) are real and non-negative. 
Let 

u, = min eigenvalue of DJrl(A,-, + B,-,), j = 1,2 ,  . . . . 

For problem P1’ we have that u, 2 u, > 0; from (39) and (40) it follows for problem P2’ that u, = 0 
when v n < 0 on Tf and that u, > uo > 0 when v - n > 0 on Tf. Here uo = min vj .  Thus from (55)  we 
obtain that w,>o 

U2J d U2J-l/(l + 2u,At) d U20(1 + 2 ~ ~ A t ) - ~ ’ + & ~ ,  (56) 

where E = 1 ,  c0 = 0 for problem P1’ and E = 1 ,  .so = 0/2At for problem P2’. Moreover, since 

U,, < (eTD,eU2,)lI2, (57)  
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we have that 

Ulj  d c’(1 + 2 ~ ~ A t ) - & ” ~ ,  

where 

c’ = max [eTDjeU2,( 1 + 2 ~ , A t ) ~ ~ ] ’ / ~  
J 
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(58) 

From (56) and (58) it follows that (53). 0 
We now define the discrete analogues of (32), (1 6), (1 7), (1 9) and (20); they are written as 

Ulj(to, xo) = eTDjuj/eTDouo (UlO(t03 XO) = 1 1 7  (59) 

Theorem 2 

Under the assumptions of Lemma 3 we have that 

T*(to, xo) = lim ?(to, xo) = lim ?(to, xo) <m. 
J-’m J+ 00 

Proof: From (61) and (58), taking into account (50>-(52), we obtain 

p,(to, xo)At d c’(1 + ~ U ~ A ~ ) - ~ O ’ - ’ ) / ~ ;  

thus from (62) it follows that 
j -  1 

k 1  
?(to, xo) d Atc’(1 + 2 ~ , A t ) ‘ / ~  C Z(l + 2~,At) -”’ /~ .  

Since 

lim [Z( 1 + 2 ~ , A t ) - ~ [ / ~ ] ’ / ’  = (1 + 2 ~ , A t ) ~ ~ / ~  < 1 ,  
I+ 00 

the series on the right of the inequality (65) is convergent. Moreover, since 
0 

j+m J-00 

Remarks 

lim (5 - to)Ulj d limjAtc’(1 + 2 ~ ~ A t ) - ” ’ ~  = 0, (64) is proved. 

(i) The matrices D(t) and A(t) depend on t through the depth h(t ,  x), the matrix B(t) through the flux 
h(t ,  x)v(t, x). Since it is assumed that Iu(t, x)lo << ho(x), in the computations we can 
approximate h(t ,  x) by means of ho(x). Thus the matrices D(t) and A(t) become constant 
matrices. 
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(ii) Let 
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j -  1 

I= 1 
G j C t O ,  ~ 0 )  = C [t[ - to -  to, xo)12~r(to* x o ) ~ t  

be an estimator of the variance of z(to, xo). Under the assumptions of Theorem 2 it is possible to show 
that 

lim Tzj(t0, x o )  < co. 
j +  00 

4.2. Monte Carlo method 

From the Monte Carlo point of view, a useful kind of discrete analogue of equation (2) ,  with w = 0, for 
the density function u(t, x) in r-dimensional space (r  = 1,2,3)  is given by 

u(t + A t ,  x k )  = 2 [Qi( 1 - P4) ]u( t ,  .;” + Ax;) + 2 [Qj( 1 + Pef)]u(t, .;” - Ax;) + [ 1 - 2 2 Q;]u(t, x k ) ,  

where xk is the kth grid point, Pef and Qi are defined as 

,=I  ;= 1 i= 1 

Pef = .;kAxi/2ki, Qj = k i A t / e ,  

k, is the difision coefficient for the ith direction, vk is the velocity vector in x k  and the other symbols 
have an obvious meaning. The conditions 

IPefI < 1, 
i= 1 

are assumed to be satisfied. 
The terms in square brackets can in fact be interpreted as probabilities related to a random walk in the 

domain Q. Starting from a source point in the domain, a fictitious particle jumps from one point to an 
adjacent one or, with probability given by the last term in square brackets, rests on the site. A walk is 
stopped according to the boundary conditions or when the total time of interest has elapsed. 

In contrast, for a purely advective process (ki = 0) an ‘upwind’ difference approximation has been 
assumed for the spatial differential operator, i.e. 

u(t ,  x k )  + 2 Rfu(t,x, + As),  
, = I  

where 

Rf = l.;klAt/Ax,, As = -Ax, when .;“ 3 0, As = Ax, when .;“ < 0. 

The condition 
r 

C R f d 1  
1= 1 

must be satisfied. 
In the Monte Carlo simulations carried out in the present work, a particle is followed until it reaches 

the exit points on the boundary. If the velocity field on these points is oriented towards the exit direction, 
the particle is lost and the elapsed time accumulated into its proper counter. Otherwise the particle is 
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driven back and the history continues. On boundaries different from the open ones a reflection condition 
is assumed so that the hitting particle is compelled to return to the previous residence point. An estimate 
of the residence probability U, ( t )  at fixed time t is computed as 

U,( t )  = 1 - Ne(t)/N, 

where Ne(t) is the total number of particles escaped before time t and N is the total number of source 
particles processed. At the same scoring time the mean residence time f ( t )  can be estimated as 

where ti( < t )  is the exit time of the ith escaped particle. 

i.e. 
For both probability U,(t)  and residence time T(t)  a standard deviation is computed in the usual way, 

where si is the current estimator for the quantity of interest s ( t )  and S its average taken over the N source 
particles. In the numerical simulations performed with N = 500, we obtained 1 OOa(U, ( t ) ) /U,  (t) < 10 
and lOOo(?(t))/?(t)< 1. 

5. NUMERICAL EXPERIMENTS 

5.1. Sample problem 1:  the two-dimensional lagoon 

We consider a rectangular basin L ,  x L, with three narrow openings ofwidth d, indicated by A, B and C 
in Figure 2. A steady flow is obtained by imposing inflows QA in A and Q, in B and an outflow 
Qc = QA + Q, in C. The data of the sample problem are given in Table I. The streamlines of the flow 
are shown in Figure 2. 

Numerical simulations have been performed by using finite volume and Monte Carlo methods for 
the pure advection problem and for the advection-difision problem P2. The mesh spacings and the 
time steps used in the two methods are different and are given in Table 11. Here we present some 
results relative to the two initial positions (xo,yo) defined in Table I. Results obtained by Monte 
Carlo methods for a pure advection and an advection-difision problem are presented in Figure 3. 
For the pure advection problem we observe that U,(t; 0, x,) decreases abruptly at t = T*(O, x,) = 
lim ?(t; 0, xo) = 50 days; the trend of ?(t: 0, xo) is linear with unit slope for t <  T*(O, x,) and 

?(t;  0, x,) = T*(O, xo) for t T*(O, x,), according to (19) and (20). The computed distributions 
U,(t;  0, xo) and estimators ?(t; 0, x,) for problem P2 obtained by the two methods (Figure 4) are the 

f+oo 

Table I. Data for sample problem 1 

3000 4000 50 4 2 6 2 (2940,800) (1 500,2000) 
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Figure 2. Rectangular basin with openings A, B (inflow) and C (outflow). The curves represent the streamlines of the flow 
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Figure 3. Sample problem 1. Comparison between pure advection (squares) and advection4iffusion (circles) problems; results by 
Monte Carlo method: (a) distribution C',(t;  0, xo); (b) estimator T ( t ;  0, xo) of residence time 
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same (differences of a few per cent). The densities p(t;  to, xo) are unimodal hc t ions  (Figure 5). The 
lines of equal concentration u(t, x) = const. and the particle distributions from Monte Carlo 
computations show that the space gradient of the concentration is sensitively dumped in a few days 
(Figure 6).  A quantitative comparison between the two methods has been made by computing (Table 
111) the probabilities 

where R(t)  is the region closed by the line u(t, x ,  y )  = lo-' and Nj( t )  is the number of particles at point i. 

5.2. Sample problem 2: the one-dimensional channel 

We consider the problem of a standing wave forced by the tide in a rectangular prismatic channel. We 
use the linearized one-dimensional approximatin governed by the wave equation. The channel of length 
L and constant depth h,, is closed at one end x = 0 and at the open end x = L the water level q(t, x )  is 
forced up and down according to 

~ ( t ,  L)  = a sin(ot), 

U. 

Figure 4. Sample problem 1 .  Computed distributions U,(t; 0, xo) and estimators ?(t; 0, xa) of residence time for problem P2: (a), 
(b) initial condition I; (c), (d) initial condition I1 (see Table I); full curves, finite volume method; circles, Monte Carlo method 
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Time (d) Time (Q 

Figure 5. Sample problem 1. Computed densities p(t; 0, xg) for problem P2 by finite volume method (a) initial condition I; 
(b) initial condition I1 (see Table I) 

where a is the amplitude and o = 2n/@, with 0 the period of tidal oscillation. Let v(t, x) be the 
component of velocity in the x-direction. At the solid boundary x = 0 we have @/ax = 0 and 
v(t, 0) = 0. The solutions q(t, x) and v(t, x) of the wave equation are given by 

q(t, x) = (a/  cos 8) cos(Px/L) sin(ot), (66) 

v(t, x) = -LY sin(Bx/L) cos(wt), (67) 

where 

Table 11. Mesh spacings and time steps for sample problem 1 

Finite volume 
(implicit time scheme) Monte Car10 

50 
50 

1800 

30 
40 

100 

Table 111. Probabilities of finding a particle in the region R(t) for the two 
numerical methods for sample problem 1 

1 0.9202 0.91 80 
2 0.8512 0.8340 
3 0.7795 0.7500 
4 0.7046 0.6740 
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a) day 1 

Km 
4.0 , I 

3.0 

2.5 

2.0 

1.5 

1 .o 

0.5 

0.0 
0 0 0.5 1.0 1.5 2.0 2.5 3.0 

Km 

Km 
4.0 / 

.@'" 
3.5-, 

0.0 0 5  1.0 1.5 2 0  2.5 3.0 

Km 

c) day 3 b) day 4 
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Figure 6. Sample problem 1. Lines of equal concentntion u(t, x) = lo-', k = 6.7, . . . , 14, for problem P2 and initial condition I, 
together with particle distributions (squares) from Monte Carlo computations 
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Table IV Data for sample problem 2 

T' (hl 

5w- ( b )  
(a) 

400- 

300- 

200- 

100- 

I I I I I I  I I I I  0 I I I I 

2000 1.2 0.1 0.00014 0.25 0.082 2 20 300 600 

Furthermore, we let h(t ,  x )  = h, in (27). Under these assumptions we assume that u(t, x )  is a solution 
of a one-dimensional problem of type P1' or P2'. This one-dimensional advection-diffusion model can 
be considered as either a depth-average model or a model for drogue floats (such as oranges, corks) on 
the sea surface. The data used in the numerical calculations are given in Table Iv. 

Let us consider the pure advective problem. The motion of a particle is governed by the equation. 

where v( f ,  x )  is given by (67). It is easy to verify that the elapsed time T*(O, x,) from the initial position 
x(0)  = no to the open boundary x(T*(O, x,)) = L is given by 

T*(o, xo> = (l/w) sin-'[(o/aB> log I tan(~/2>/ ~ ~ ~ ( B X ~ / ~ L > I I .  (68) 
Let 2,, be the value of xo for which the argument of the sin-' function in the expression for T*(O, xo)  is 
equal to unity (note that P<n). Thus, for L - x, < L - 2, = 140.4 m, T*(O, x,) is an increasing 
h c t i o n  of the distance L - xo between the initial position and the open boundary (Figure 7(a); for 
L - xo > L - 2, the particle never reaches the open boundary and T*(O, x,,) = CQ. For comparison, 
T*(O, xo) computed for a pure difision problem is shown in Figure 7(b). 

Let us now consider the advection-diffusion problem Pl'. In this case the condition on the open 
boundary is independent of the direction of the flow, so the particle always has a non-zero escape 
probability. Because of the oscillating velocity field, the distribution Ul(t;  0, xo) decreases more or less 
depending on the direction of the flow in the channel (Figure 8(a)). Moreover, the densityp(t; 0, xo) is an 
oscillating function of the same period of the tide; the amplitude reaches a maximum and then vanishes 

Figure 7. Sample problem 2. Residence time T*(O, x,) versus L - x,: (a) for advective motion in channel; full curve, equation (68); 
circles, Monte Car10 method; @) for pure diffusive problem 
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Table V Sample problem 2. Residence times and their standard deviations for pure diffusion 
problem and problems P1’ and P2‘ 

Velocity Boundary Standard 
field conditions T* (days) deviation of Tc (days) 

v = o  u = o  10.5 9.3 
Tidal oscillations u = o  9.8 8.5 
Tidal oscillations See (31) 12.3 10.8 

as t + 00 (Figure 8(b)). The residence time and its standard deviation (Figures 8(c) and 8(d)) are of the 
same order of magnitude. The estimator of the standard deviation (Figure 8(d)) shows a plateau for 
I = T*(O, xo) (see the definition of T2(t; 0, xo)  in remark (iii) below Theorem 1). 

For the advectiondifision problem P2’ the condition on the open boundary is dependent on the 
direction of the flow, so the particle has a zero escape probability during the periods of inflow. Thus in 
these time intervals the slope of ZJ,(t; 0, xo) and the densityp(t; 0, xo)  are zero (Figures 9(a) and 9(b)). 
The trends of T(t; 0 , ~ ~ )  and T2(t; O,xo) (Figures 9(c) and 9(d)) show the same features as those for 
problem Pl’. Tidal oscillations affect the trends of the residence time estimators much less than those of 
the probability densities (Figures 8(b), 8(c), 9(b) and 9(c)). The asymptotic values T*(O, xo) for the 
considered situations are given in Table V 

0 0 1  , , , , , , , , I , 
0 2 4 6 8 10 I? I 4  16 10 20 

TLn Isg 

Id) 

011 “1 

I*n I* 

Figure 8. Sample problem 2. Finite volume results for problem PI’ in channel with flow induced b tide: (a) distribution 
U,(r; 0, q,); @) density& 0, x,,)At; (c) estimator T(t; 0, x,,) ofresidence time; (d) estimator [T,(r; 0, xo)] I Y 2  of standard deviation 

of residence time 
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u. 

Figure 9. Sample problem 2. Finite volume results for problem P2' in channel with flow induced b tide: (a) distribution 
(I, ( t ;  0, xg); @) densityp(r; 0, xo)At; (c) estimator T ( t ;  0, xo)  of residence time, (d) estimator [T2(t; 0, x , ) ] ' ~  of standard deviation 

of residence time 

6. CONCLUDING REMARKS 

In this paper the problem of estimating the residence time of a passive constituent released at a given 
point in a semienclosed marine basin is studied. We define the random variable z(to, xo) that represents 
the time spent by the particle in the basin. Its mean value T*(to, xo) is defined as the residence time of a 
particle released at time to in xo. The basic assumptions of the model are: the stochastic dispersion 
process is described by the advection-difision equation; the flow field is either unidirectional in time or 
forced by the tide; the conditions on the fluid boundaries are such that all the particles eventually leave 
the basin. 

Under these assumptions we prove that T*(to, xo) has a finite value. Two numerical models are used 
to solve the advection-difision equation: the finite volume and Monte Car10 methods. The results of 
the two models are quantitatively very similar for both the integrated quantities and the distribution of 
particles. A discrete approximation of problems with the flow forced by the tide, in the general shallow 
water formulation, is presented, its properties are shown and discrete analogues of Lemma 2 and 
Theorem 1 (see Lemma 4 and Theorem 2) are proved. 

An investigation of dispersion processes and residence times in a large-scale basin where the flow 
field is characterized by recirculating gyres is in progress.'o The numerical simulations of the dispersion 
processes are performed by means of Eulerian and Lagrangian models. The Lagrangian model consists 
of the numerical integration of a stochastic equation belonging to the general class of 'random flight 
models ' . 
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